Brain perfusion SPECT study with 99mTc-bicisate: clinical pitfalls and improved diagnostic accuracy with a combination of linearization and scatter-attenuation correction.

نویسندگان

  • H Kado
  • H Iida
  • H Kimura
  • T Ogawa
  • Y Narita
  • J Hatazawa
  • T Tsuchida
  • Y Yonekura
  • H Itoh
چکیده

To evaluate the usefulness of a combination of linearization and scatter-attenuation correction on 99mTc-bicisate (ECD)-single photon emission tomographic (SPECT) images, both cerebral blood flow (CBF)-positron emission tomographic (PET) images and ECD-SPECT images from fifteen patients with chronic cerebral infarction were acquired. We measured radioactivity counts in regions of interest (ROIs) on all sets of both images and obtained a 2D scattered graph between ECD-SPECT and CBF-PET data. To evaluate diagnostic accuracy, the sensitivity, specificity and accuracy of ECD-SPECT images were calculated by means of discriminant analysis. The same analysis was also performed on the ECD-SPECT images corrected by a combination of linearization and scatter-attenuation correction. An overall nonlinear relationship was observed between ECD-SPECT and CBF-PET. The sensitivity, specificity, and accuracy of ECD-SPECT images were 69.6%, 91.4% and 73.0%, and those of ECD images corrected by the combination of linearization and scatter-attenuation correction were 79.5%, 95.7% and 82.0% respectively. The clinically diagnostic accuracy of ECD-SPECT images corrected by the combined method apparently increased. So that the linearization with the scatter-attenuation method is useful for improving the diagnostic accuracy of ECD-SPECT images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attenuation correction in myocardial perfusion SPECT using sequential transmission - emission scanning with 99mTc [Persain]

Introduction: Nowadays, Imaging of the myocardial perfusion (MPI) using the single photon emission tomography (SPET) in the diagnosis of coronary artery disease, especially myocardial ischemia, is of great importance. In contrast to the coronary artery angiography, MPI is non-invasive, less expensive and more physiological. Unfortunately, this image is affected by the some artifacts. Thes...

متن کامل

New approach for attenuation correction in SPECT images, using linear optimization

Background: Photon attenuation as an inevitable physical phenomenon influences on the diagnostic information of SPECT images and results to errors in accuracy of quantitative measurements. This can be corrected via different physical or mathematical approaches. As the correction equation in mathematical approaches is nonlinear, in this study a new method of linearization called ‘Piece ...

متن کامل

Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging.

BACKGROUND Soft tissue attenuation is a prominent cause of single-photon emission computed tomography (SPECT) imaging artifacts, which may result in reduced diagnostic accuracy of myocardial perfusion imaging. A method incorporating simultaneously acquired transmission data permits nonuniform attenuation correction and when incorporating scatter correction and resolution compensation may substa...

متن کامل

Assessment of the impact of applying attenuation correction on the accuracy of activity recovery in Tc99m-ECD brain SPECT of healthy subject using Statistical Parametric Mapping (SPM)

Introduction: Photon attenuation in tissues is the primary physical degrading factor limiting both visual qualitative interpretation and quantitative analysis capabilities of reconstructed Single Photon Emission Computed Tomography (SPECT) images. The aim of present study was to investigate the effect of attenuation correction on the detection of activation foci following statistical analysis w...

متن کامل

A new approach to scatter correction in SPECT images based on Klein_Nishina equation

Introduction: Scattered photon is one of the main defects that degrade the quality and quantitative accuracy of nuclear medicine images. Accurate estimation of scatter in projection data of SPECT is computationally extremely demanding for activity distribution in uniform and non-uniform dense media. Methods: The objective of this paper is to develop and validate a scatter correction technique ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of nuclear medicine

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2001